Low-Loss BaTiO3–Si Waveguides for Nonlinear Integrated Photonics

2016 
Barium titanate (BaTiO3) has become an attractive material to extend the functionalities of the silicon photonics platform because of its large Pockels coefficient of more than 1000 pm/V. BaTiO3 integrated epitaxially on silicon-on-insulator substrates can be structured in passive and electro-optic silicon photonic devices using slot-waveguide geometries, both of which have been demonstrated. However, all devices demonstrated so far suffer from high optical propagation losses of ∼40–600 dB/cm, which limits their performance compared with state-of-the-art silicon photonics devices (<2 dB/cm). Here, we identify the origin of these high propagation losses and demonstrate a path to fabricate low-loss BaTiO3–Si waveguides with propagation losses of only 6 dB/cm. In particular, we identified the thin strontium titanate (SrTiO3) seed layer typically used for the epitaxial deposition of BaTiO3 on silicon as the main source of absorption: When manufacturing slot-waveguide structures, the BaTiO3/SrTiO3 layer stack ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    52
    Citations
    NaN
    KQI
    []