Associations of Alcohol Consumption with Cardiovascular Disease-Related Proteomic Biomarkers: The Framingham Heart Study.

2021 
BACKGROUND Alcohol consumption and cardiovascular disease (CVD) have a complex relation. OBJECTIVES We examined the associations between alcohol consumption, fasting plasma proteins, and CVD risk. METHODS We performed cross-sectional association analyses of alcohol consumption with 71 CVD-related plasma proteins, and also performed prospective association analyses of alcohol consumption and protein concentrations with 3 CVD risk factors (obesity, hypertension, and diabetes) in 6745 Framingham Heart Study (FHS) participants (mean age 49 y; 53% women). RESULTS A unit increase in log10 transformed alcohol consumption (g/d) was associated with an increased risk of hypertension (HR = 1.14; 95% CI: 1.04, 1.26; P = 0.007), and decreased risks of obesity (HR = 0.80; 95% CI: 0.71, 0.91; P = 4.6 × 10-4) and diabetes (HR: 0.68; 95% CI: 0.58, 0.80; P = 5.1 × 10-6) in a median of 13-y (interquartile = 7, 14) of follow-up. We identified 43 alcohol-associated proteins in a discovery sample (n = 4348, false discovery rate <0.05) and 20 of them were significant (P <0.05/43) in an independent validation sample (n = 2397). Eighteen of the 20 proteins were inversely associated with alcohol consumption. Four of the 20 proteins demonstrated 3-way associations, as expected, with alcohol consumption and CVD risk factors. For example, a greater concentration of APOA1 was associated with higher alcohol consumption (P = 1.2 × 10-65), and it was also associated with a lower risk of diabetes (P = 8.5 × 10-6). However, several others showed unexpected 3-way associations. CONCLUSIONS We identified 20 alcohol-associated proteins in 6745 FHS samples. These alcohol-associated proteins demonstrated complex relations with the 3 CVD risk factors. Future studies with integration of more proteomic markers and larger sample size are warranted to unravel the complex relation between alcohol consumption and CVD risk.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []