Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

2017 
It is well-known that substrate surface properties have a profound impact on the morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution-coated semiconducting polymers, as the substrate-directed thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We perform in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing donor–acceptor (D–A) conjugated polymers. We find that decreasing the substrate surface energy progressively...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    35
    Citations
    NaN
    KQI
    []