Ozone Treatment: A Versatile Tool for the Postsynthesis Modification of Porous Silica-Based Materials

2018 
Facile synthesis of silica-based functional materials at low temperatures has remained a challenge in materials science. To this end, we demonstrate the use of a gaseous ozone stream, generated via an electric discharge method, as a versatile tool for the postsynthesis modification of silica-based functional nanomaterials. First, a parametric study is conducted with a mesoporous model material to obtain basic insights into the reaction of the organics with ozone. The study is then extended to a number of distinct silica-based inorganic materials. The scope of ozone treatment can be broadly classified into three categories: (a) elimination of templates or structure directing agents (SDAs) from materials with pore sizes ranging from 0.5 to 10 nm, (b) selective transformation of organic groups functionalized on the mesoporous silica, and (c) simultaneous elimination of intermediate polymeric shells and template from the outer shells to obtain yolk–shell type materials. Each material studied here requires dif...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    10
    Citations
    NaN
    KQI
    []