Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation

2021 
The hierarchical binary CdS/NiO hollow heterogeneous architectures (HHAs) with p-n heterojunction are constructed by a facile microwave-assisted wet chemical process for high-efficient photocatalytic hydrogen evolution reaction (HER) from water. The asdesigned CdS/NiO HHAs are composed of hexagonal n-type CdS nanoparticles with a size in the range of 20–40 nm attaching to cubic p-type NiO hollow microspheres (HMSs) which are aggregates of porous nanoplates with a thickness of about 20 nm. The photocatalytic water splitting over CdS/NiO HHAs is significantly increased under simulated solar irradiation, among which the most active sample of CdS/NiO-3 (the mass ratio of CdS to NiO is 1:3) exhibits the fastest photocatalytic HER rate of 1.77 mmol·g−1·h−1, being 16.2 times than that of pure CdS. The boosted photocatalytic HER could be attributed to the synergistic effect on the proportional p-n heterojunction with special hierarchical hollow and porous morphology, an enhancement of visible light absorption, and an improvement of photoinduced charge separation as well as the photo-stability given by the composite heterojunction. This work shows a viable strategy to design the heterojunction with special morphology for the efficient hydrogen generation by water splitting utilizing solar energy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []