Enhancement of the Stability of Chlorophyll using Chlorophyll-encapsulated Polycaprolactone Microparticles based on Droplet Microfluidics

2019 
Abstract Chlorophyll is a valuable bioactive compound, which is used as a natural food coloring agent and a photosensitizer for photodynamic therapy because of its antioxidant properties, antimutagenic ability, and near-infrared fluorescence. However, chlorophyll is unstable when it comes to retaining its antioxidant activity, when exposed to oxygen, high temperature, or light environments. To enhance the stability of chlorophyll, a polymer encapsulation method was proposed. Polycaprolactone (PCL) was employed to encapsulate the chlorophyll, and the particles size of the composites was controlled through droplet microfluidics. The composites (chlorophyll-encapsulated PCL particles) were characterized through UV–VIS spectrometry, SEM, optical microscopy, and light exposure. The particles were spherical, with diameters adjustable from 68 to 247 μm. Additionally, the chlorophyll-encapsulated PCL particles exhibited considerably prolonged chlorophyll stability. The solid microparticle is more convenient for storage and transportation, and have great potential for application in the food industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    17
    Citations
    NaN
    KQI
    []