Resin viscosity determines the condition for a valid exposure reciprocity law in dental composites

2020 
Abstract Objective To provide conditions for the validity of the exposure reciprocity law as it pertains to the photopolymerization of dimethacrylate-based dental composites. Methods Composites made from different mass ratios of resin blends (Bis-GMA/TEGDMA and UDMA/TEGDMA) and silanized micro-sized glass fillers were used. All the composites used camphorquinone and ethyl 4-dimethylaminobenzoate as the photo initiator system. A cantilever beam-based instrument (NIST SRI 6005) coupled with NIR spectroscopy and a microprobe thermocouple was used to simultaneously measure the degree of conversion (DC), the polymerization stress (PS) due to the shrinkage, and the temperature change (TC) in real time during the photocuring process. The instrument has an integrated LED light curing unit providing irradiances ranging from 0.01 W/cm2 to 4 W/cm2 at a peak wavelength of 460 nm (blue light). Vickers hardness of the composites was also measured. Results For every dental composite there exists a minimum radiant exposure required for an adequate polymerization (i.e., insignificant increase in polymerization with any further increase in the radiant exposure). This minimum predominantly depends on the resin viscosity of composite and can be predicted using an empirical equation established based on the test results. If the radiant exposure is above this minimum, the exposure reciprocity law is valid with respect to DC for high-fill composites (filler contents >50% by mass) while invalid for low-fill composites (that are clinically irrelevant). Significance The study promotes better understanding on the applicability of the exposure reciprocity law for dental composites. It also provides a guidance for altering the radiant exposure, with the clinically available curing light unit, needed to adequately cure the dental composite in question.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    12
    Citations
    NaN
    KQI
    []