Rice husk combustion evolved gas analysis experiments and modelling

2015 
Abstract Rice husk is a major agricultural waste which could be a major source of fuel for boilers and furnaces if its calorific value could be realized efficiently. The oxidation kinetics of rice husks combustion were investigated using an evolved gas analysis technique. Rice husk samples were heated from 100 °C to 500 °C at a constant rate inside a small pressurised reactor. An oxygen-containing gas was passed through the reactor at a controlled flow rate and the evolved gas was continually analysed for its oxygen, carbon monoxide and carbon dioxide contents after moisture had been removed. A model for the oxidation of the rice husks samples is proposed that considers that the many simultaneous and competing oxidation reactions may be adequately represented by grouping them into three overlapping and competing reaction regimes in which CO 2 , CO and H 2 O are the only reaction products. The activation energies, and peak oxygen consumption temperatures were all found to be linear functions of the oxygen partial pressure in the reactor. Increasing the oxygen partial pressure decreased the temperatures at which peak oxygen consumption occurred. The total system pressure had no effect on the combustion behaviour other than through the oxygen partial pressure. At a heating rate of 80 K h −1 and a system pressure of 500 kPa values for E/R for the low temperature, medium temperature and high temperature oxidation reactions are 14.7, 19.2 and 17.4 respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []