Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes

2011 
At present, the photovoltaic performance of quantum dot-sensitized solar cells (QDSCs) is still much lower than conventional DSCs. Appropriate porous TiO2 photoanodes for QDSCs need to be further investigated, and optimization of the nanoparticle-based photoanodes is highly desirable as well. In this article, the influence of the structural properties of various TiO2 photoanodes on CdS/CdSe-sensitized solar cells have been systematically studied. Quantitative analyses of light-harvesting efficiency (LHE) and electron-transfer yield (ΦET) for the QDSCs are investigated for the first time. It is revealed that the LHE increases in the long wavelength region with the addition of large size TiO2 particles to the transparent film. In the meantime, the balance between the light scattering and surface area also needs to be controlled, which can significantly restrain the dark current of the device. A double-layer photoanodic structure can give 4.92% of light-to-electricity conversion efficiency with a photoactive area of 0.15 cm2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    256
    Citations
    NaN
    KQI
    []