Depth dependent ferroelectric to incommensurate/commensurate antiferroelectric phase transition in epitaxial lanthanum modified lead zirconate titanate thin films

2019 
Transmission electron microscopy was used to investigate the coexistence of ferroelectricity (FE) and antiferroelectricity (AFE) in (001) and (011) (Pb0.97, La0.02) (Zr0.95, Ti0.05) O3 (PLZT) epitaxial thin films. The depth resolved selected area electron diffraction (SAED) results revealed that the AFE phase was located in the near interface region, whereas the FE phase was found in the near surface region. A thickness dependent lattice parameter distribution was calculated using the SAED data, and a decrease in the c/a ratio was found to correlate with the transition from AFE to FE stability. Additionally, commensurate and incommensurate modulations in AFE PLZT were identified based on the observation of various superlattice reflections.Transmission electron microscopy was used to investigate the coexistence of ferroelectricity (FE) and antiferroelectricity (AFE) in (001) and (011) (Pb0.97, La0.02) (Zr0.95, Ti0.05) O3 (PLZT) epitaxial thin films. The depth resolved selected area electron diffraction (SAED) results revealed that the AFE phase was located in the near interface region, whereas the FE phase was found in the near surface region. A thickness dependent lattice parameter distribution was calculated using the SAED data, and a decrease in the c/a ratio was found to correlate with the transition from AFE to FE stability. Additionally, commensurate and incommensurate modulations in AFE PLZT were identified based on the observation of various superlattice reflections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    3
    Citations
    NaN
    KQI
    []