Model Anionic Block Copolymer Vesicles Provide Important Design Rules for Efficient Nanoparticle Occlusion within Calcite

2019 
Nanoparticle occlusion within growing crystals is of considerable interest because (i) it can enhance our understanding of biomineralization and (ii) it offers a straightforward route for the preparation of novel nanocomposites. However, robust design rules for efficient occlusion remain elusive. Herein, we report the rational synthesis of a series of silica-loaded poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(ethylene glycol dimethacrylate)-poly(methacrylic acid) tetrablock copolymer vesicles using polymerization-induced self-assembly. The overall vesicle dimensions remain essentially constant for this series; hence systematic variation of the mean degree of polymerization (DP) of the anionic poly(methacrylic acid) steric stabilizer chains provides an unprecedented opportunity to investigate the design rules for efficient nanoparticle occlusion within host inorganic crystals such as calcite. Indeed, the stabilizer DP plays a decisive role in dictating both the extent of occlusio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    34
    Citations
    NaN
    KQI
    []