Antimicrobial activity and degradation of superhydrophobic magnesium substrates in bacterial media

2021 
The interest in magnesium-based materials is promoted by their biocompatibility, bioresorbability, and by their recently found antibacterial potential. Until now the widespread use of magnesium alloys in different corrosive environments was inhibited by their weakly controllable degradation rate and poorly understood microbiologically induced corrosion behavior. To better understand the degradation and usability of magnesium-based alloys, in this study we have fabricated the superhydrophobic coatings on top of magnesium-based alloy and analyzed the behavior of this alloy in bacterial dispersions of Pseudomonas aeruginosa and Klebsiella pneumoniae cells in phosphate buffered saline. It was shown that immersion of such coatings into bacterial dispersions causes notable changes in the morphology of the samples, dependent on the bacterial dispersion composition and the type of bacterial strain. The interaction of superhydrophobic coatings with the bacterial dispersion caused the formation of biofilms and sodium polyphosphate films, which provided enhanced barrier properties for magnesium dissolution and hence for dispersion medium alkalization, eventually leading to inhibition of magnesium substrate degradation. Electrochemical data obtained for superhydrophobic samples continuously contacted with the corrosive bacterial dispersions during 48 h indicated a high level of anti-corrosion protection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []