Shallow crustal velocities and volcanism suggested from ambient noise studies using a dense broadband seismic network in the Tatun Volcano Group of Taiwan

2017 
Abstract The Tatun Volcano Group (TVG) is situated adjacent to the Taipei metropolis and was active predominantly around 0.8–0.2 Ma (Pleistocene). Various recent lines of evidence suggest that the TVG is a potentially active volcano and that future volcanic eruptions cannot be ruled out. Geothermal activities are largely constrained to faults, but the relationship between volcanism and detailed velocity structures is not well understood. We analyzed ambient seismic noise of daily vertical components from 2014 using a dense seismic network of 40 broadband stations. We selected a 0.02° grid spacing to construct 2D and 3D shallow crustal phase velocity maps in the 0.5–3 s period band. Two S-wave velocity profiles transect Chishingshan (Mt. CS) in the shallow 3 km crust are further derived. The footwall of the Shanchiao Fault is dominated by low velocity, which may relate to Tertiary bedrock buried under andesitic lava flows dozens to hundreds of meters thick. The hanging wall of the Shanchiao Fault is the location of recent major volcanic activities. Low velocity zones in the southeast of Dayoukeng (DYK) may be interpreted as hydrothermal reservoirs or water-saturated Tertiary bedrock related to Cenozoic structures in the shallow crust. High velocities conspicuously dominate the east of the TVG, where the earliest stages of volcanism in the TVG are located, but where surface hydro-geothermal activities were absent in recent times. Between the Shanchiao Fault and Kanchiao Fault high velocities were detected, which converge below Mt. CS and may be related to early stages of magma conduits that gradually consolidated. These two faults may play a significant role with the TVG. The submarine volcanism adjacent to the Keelung coastline also requires further attention.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    7
    Citations
    NaN
    KQI
    []