Direct measurement of 1-mN-class thrust and 100-s-class specific impulse for a CubeSat propulsion system

2020 
This paper presents the development of a thrust stand to enable direct measurement of thrust and specific impulse for a CubeSat propulsion system during firing. The thrust stand is an inverted pendulum and incorporates a mass balance for direct in situ mass measurement. The proposed calibration procedure allows precise performance characterization and achieves a resolution of 80 μN thrust and 0.01 g mass loss, by taking into account the drift of the thrust-stand zero caused by propellant consumption. The performance of a water micro-resistojet propulsion system for CubeSats was directly characterized as a proof of concept of the thrust stand. Continuous profiles of thrust, specific impulse, and mass consumption were acquired under various conditions in a single firing test. A thrust from 1 mN to 10 mN and a specific impulse from 45 s to 100 s with a maximum measurement uncertainty of ±15.3% were measured for the throat Reynolds number in the range 100–400.This paper presents the development of a thrust stand to enable direct measurement of thrust and specific impulse for a CubeSat propulsion system during firing. The thrust stand is an inverted pendulum and incorporates a mass balance for direct in situ mass measurement. The proposed calibration procedure allows precise performance characterization and achieves a resolution of 80 μN thrust and 0.01 g mass loss, by taking into account the drift of the thrust-stand zero caused by propellant consumption. The performance of a water micro-resistojet propulsion system for CubeSats was directly characterized as a proof of concept of the thrust stand. Continuous profiles of thrust, specific impulse, and mass consumption were acquired under various conditions in a single firing test. A thrust from 1 mN to 10 mN and a specific impulse from 45 s to 100 s with a maximum measurement uncertainty of ±15.3% were measured for the throat Reynolds number in the range 100–400.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    8
    Citations
    NaN
    KQI
    []