Bioinspired architecture of a hybrid bifunctional enzymatic/organic electrocatalyst for complete ethanol oxidation

2019 
Abstract Electrochemical ethanol oxidation was performed at an innovative hybrid architecture electrode containing TEMPO-modified linear poly(ethylenimine) (LPEI) and oxalate oxidase (OxOx) immobilized on carboxylated multi-walled carbon nanotubes (MWCNT-COOH). On the basis of chromatographic results, the catalytic hybrid electrode system completely oxidized ethanol to CO 2 after 12 h of electrolysis. The fact that the developed system can catalyze ethanol electrooxidation at a carbon electrode confirms that organic oxidation catalysts combined with enzymatic catalysts allow up to 12 electrons to be collected per fuel molecule. The Faradaic efficiency of the hybrid system investigated herein lies above 87%. The combination of OxOx with TEMPO-LPEI to obtain a novel hybrid anode to oxidize ethanol to carbon dioxide constitutes a simple methodology with useful application in the development of enzymatic biofuel cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    10
    Citations
    NaN
    KQI
    []