Rational design of nanomedicine for photothermal‐chemodynamic bimodal cancer therapy

2020 
Given the diversity, complexity, and heterogeneity of persistent tumors, traditional nanoscale monotherapeutic systems suffer from dissatisfactory curative efficiency with incidence of metastasis or relapse. In parallel, the trend of clinical research on the basis of nanomedicines has increasingly shifted from monotherapy toward combinatorial therapy for admirable synergetic performances. In this regard, cutting-edge nanomedicines harnessing photothermal-chemodynamic bimodal therapy (PTT/CDT) have opened up a highly-efficient and relatively-safe cancer theranostic paradigm. Still, the integration of PTT/CDT functional units into one nanomedicine remains a herculean but meaningful task to achieve notable super-additive effects. This review aims to elucidate underlying synergistic interactions of PTT/CDT and highlight intriguing designs of nanomedicines for PTT/CDT including nanomaterial selection, performance optimization, multimodal therapy, visualization strategies, and targeting strategies. Furthermore, an outlook on further improvements of PTT/CDT is provided, emphasizing significant scientific issues that require remediation for clinical translation. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    98
    References
    5
    Citations
    NaN
    KQI
    []