Ultrasensitive Label-Free Nanosensing and High-Speed Tracking of Single Proteins

2017 
Label-free detection, analysis, and rapid tracking of nanoparticles is crucial for future ultrasensitive sensing applications, ranging from understanding of biological interactions to the study of size-dependent classical-quantum transitions. Yet optical techniques to distinguish nanoparticles directly among their background remain challenging. Here we present amplified interferometric scattering microscopy (a-iSCAT) as a new all-optical method capable of detecting individual nanoparticles as small as 15 kDa proteins that is equivalent to half a GFP. By balancing scattering and reflection amplitudes the interference contrast of the nanoparticle signal is amplified 1 to 2 orders of magnitude. Beyond high sensitivity, a-iSCAT allows high-speed image acquisition exceeding several hundreds of frames-per-second. We showcase the performance of our approach by detecting single Streptavidin binding events and by tracking single Ferritin proteins at 400 frames-per-second with 12 nm localization precision over seco...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    57
    Citations
    NaN
    KQI
    []