Adsorption, isolated electron/hole transport, and confined catalysis coupling to enhance the photocatalytic degradation performance

2022 
Abstract A high photogenerated carrier efficiency and a minimal recombination rate are key factors in achieving high photocatalytic efficiency. Herein, N-doped carbon (NC) nanotubes and polyaniline (PANI) fibers are compounded around Ag3PO4 nanoparticles to form a built-in electric field for electron-hole double transfer. Wrapping β-cyclodextrin (β-CD) around PANI fiber to isolate electron/hole composite channels is innovatively proposed. By reducing the recombination probability, more electrons can be transferred to the NC to realize a reduction of O2 to H2O2. Additionally, the encapsulation of PANI fiber by β-CD can stabilize hole carriers, and enable phenol to be quickly transported to the confined space containing abundant hole carriers for rapid degradation. The obtained 3%CDP@Ag3PO4@NC catalyst’s charge extraction rate is twice that of Ag3PO4 and exhibits high photodegradation performance with 100% removal rate of 20 ppm phenol within 8 min under visible light, the performance of which is superior to currently Ag3PO4 based catalysts reported.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []