The electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channels

2021 
We explore and contrast the capabilities of future colliders to probe the nature of the electro-weak phase transition. We focus on the real singlet scalar field extension of the Standard Model, representing the most minimal, yet most elusive, framework that can enable a strong first-order electro-weak phase transition. By taking into account the theoretical uncertainties and employing the powerful complementarity between gauge and Higgs boson pair channels in the searches for new scalar particles, we find that a 100 TeV proton collider has the potential to confirm or falsify a strong first-order transition. Our results hint towards this occurring relatively early in its lifetime. Furthermore, by extrapolating down to 27 TeV, we find that a lower-energy collider may also probe a large fraction of the parameter space, if not all. Such early discoveries would allow for precise measurements of the new phenomena to be obtained at future colliders and would pave the way to definitively verify whether this is indeed the physical remnant of a scalar field that catalyses a strong first-order transition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    146
    References
    12
    Citations
    NaN
    KQI
    []