Dependence of cryogenic strength of hydroxide catalysis bonded silicon on type of surface oxide

2013 
Hydroxide catalysis bonding is a joining technique used in the construction of highly stable opto-mechanical systems including quasi-monolithic silica suspensions for first and second generation gravitational wave detectors. Future generations of detector are likely to operate at cryogenic temperatures necessitating a change in testmass/suspension material. A promising candidate material is silicon, which requires an oxide surface layer for hydroxide catalysis bonding to be reliable. Here, we present first results showing the influence of the type of oxide layer applied on bond strength, measured at room temperature and 77 K, and identify preferred oxide deposition methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    6
    Citations
    NaN
    KQI
    []