Fabrication and characterization of superhydrophobic copper fiber sintered felt with a 3D space network structure and their oil–water separation

2016 
Abstract This study reports the fabrication of a novel stable superhydrophobic and superoleophylic porous metal material on a copper fiber sintered felt (CFSF) substrate via a simple solution-immersion method. Oxidation and modification times are two important factors related to the level of hydrophobicity; oxidation for 1 h and modification for 24 h are appropriate to build a superhydrophobic CFSF surface with a water contact angle of 152.83° and a kerosene contact angle of 0°. The stability and high temperature resistance of superhydrophobic CFSF were studied. A novel device was designed to measure the water repellent ability of the treated CFSF. The results indicated that the water repellent ability of superhydrophobic CFSF was almost constant after 40 cycles of sanding. Both the water contact angle and the microstructure of the modified CFSF surface remained nearly unchanged after experiencing ultrasonic vibration for 1 min. The modified CFSF surface maintains super hydrophobicity after being treated at 180 °C for 1 h. The separation efficiencies for different types of oils and organic solvents (kerosene, chloroform, n -hexane and gasoline) are more than 96%. The modified CFSF retains a high robustness of separation efficiency even after it is recycled for the separation of kerosene and water for more than 10 times.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    8
    Citations
    NaN
    KQI
    []