Elastic polypyrrole hydrogels reinforced by TEMPO-oxidized cellulose for supercapacitors

2021 
Abstract Elastic conducting hydrogel is a promising candidate for the construction of high-performance electronic devices because of the unique mechanical and electrical features of conducting hydrogel with three-dimensional network. But conducting polymers are considered to be inherently rigid due to the conjugated chains in the macromolecular structures, leading to poor processability. Making conducting polymer hydrogels elastic by a rational and facile design is paramount for the construction of remarkable electronic device. Here, elastic polypyrrole (PPy) hydrogels reinforced by TEMPO-oxidized cellulose are obtained in the presence of methyl orange and FeCl3 during the static polymerization and self-assembly process. The as-prepared hydrogels exhibit one-dimensional nanotubes-based porous networks with electric conductivity, high elasticity and mechanical stability. With this special design, the symmetric quasi-solid-state supercapacitor fabricated by PPy hydrogels reinforced by TEMPO-oxidized cellulose electrodes deliver good electrochemical performance and can be connected in series as an electronic circuit to light up a LED bulb. All of the characteristics of the resulting PPy hydrogels reinforced by TEMPO-oxidized cellulose open an avenue for potential energy storage applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []