Understanding CO2 electrochemical reduction kinetics of mixed-conducting cathodes by the electrical conductivity relaxation method

2020 
Abstract Electrochemical reduction reaction is an important approach to utilize CO2 and convert it into valuable products. Exceptional reaction kinetics at a high temperature of solid oxide electrolysis cells (SOECs) attracts particular attention. In this work, we propose to investigate CO2-RR kinetics using a new theoretical method based on the electrical conductivity relaxation (ECR) technique on a typical mixed-conducting Sr2Fe1.5Mo0.5O6-δ (SFM) electrode. Three kinetic parameters that are commonly adopted in the typical electrochemical test experiments consisting of overpotential, current density and area-specific resistance (ASR) are derived. The overpotential resulted from the difference in the oxygen partial pressure is caused by the change of CO2 partial pressure, while current density from the surface reaction rate constant. Accordingly, area-specific resistance, as well as overpotential-current density relationship, can be derived. We believe that this work brings a new method to study the kinetic process of CO2 electrolysis and to evaluate the electrocatalyst activity of developed new electrode materials as well as to benefit the designing of novel electrode electrocatalysts for highly efficient solid oxide electrolysis cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    6
    Citations
    NaN
    KQI
    []