Hydrogenation of small hydrocarbons on MgO supported Pd nanoparticles: The A-E-model expanded

2019 
The hydrogenation of ethylene and acetylene was studied on a Pdn/MgO/Mo(100) model system containing palladium particles with a narrow size distribution around Pd26 (Pd20 to Pd35). Reactivity measurements were carried out in an ultrahigh vacuum chamber under isothermal conditions in the presence of deuterium. The catalyst system can readily hydrogenate both of these small molecules, and for acetylene, an alternative reaction network exists, in which it is trimerized to benzene. Distinct deactivation behavior was found for the two molecules and ascribed to different adsorption sites formed and influenced by the carbonaceous overlayer formed during the course of the reaction. These findings extend the A-E-model by Borodzinski and Golȩbiowski to extremely small particles and low partial pressures and show that it is possible to study realistic catalytic sites under highly defined conditions.The hydrogenation of ethylene and acetylene was studied on a Pdn/MgO/Mo(100) model system containing palladium particles with a narrow size distribution around Pd26 (Pd20 to Pd35). Reactivity measurements were carried out in an ultrahigh vacuum chamber under isothermal conditions in the presence of deuterium. The catalyst system can readily hydrogenate both of these small molecules, and for acetylene, an alternative reaction network exists, in which it is trimerized to benzene. Distinct deactivation behavior was found for the two molecules and ascribed to different adsorption sites formed and influenced by the carbonaceous overlayer formed during the course of the reaction. These findings extend the A-E-model by Borodzinski and Golȩbiowski to extremely small particles and low partial pressures and show that it is possible to study realistic catalytic sites under highly defined conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []