Prospects for Galactic and stellar astrophysics with asteroseismology of giant stars in the $\it{TESS}$ Continuous Viewing Zones and beyond.

2020 
The NASA-$\it{TESS}$ mission presents a treasure trove for understanding the stars it observes and the Milky Way, in which they reside. We present a first look at the prospects for Galactic and stellar astrophysics by performing initial asteroseismic analyses of bright ($G < 11$) red giant stars in the $\it{TESS}$ Southern Continuous Viewing Zone (SCVZ). Using three independent pipelines, we detect $\nu_{\mathrm{max}}$ and $\Delta\nu$ in 41% of the 15,405 star parent sample (6,388 stars), with consistency at a level of $\sim 2\%$ in $\nu_{\mathrm{max}}$ and $\sim 5\%$ in $\Delta\nu$. Based on this, we predict that seismology will be attainable for $\sim 3\times10^{5}$ giants across the whole sky, subject to improvements in analysis and data reduction techniques. The best quality $\it{TESS}$-CVZ data, for 5,574 stars where pipelines returned consistent results, provide high quality power spectra across a number of stellar evolutionary states. This makes possible studies of, for example, the Asymptotic Giant Branch bump (AGBb). We demonstrate that mixed $\ell=1$ modes and rotational splitting are cleanly observed in the 1-year data set. By combining $\it{TESS}$-CVZ data with $\it{TESS}$-HERMES, $\it{SkyMapper}$, APOGEE and $\it{Gaia}$ we demonstrate the potential for Galactic archaeology studies using the data, which provides good age precision and accuracy that reproduces the age of high $\mathrm{[\alpha/Fe]}$ stars and relationships between mass and kinematics from studies based on $\it{Kepler}$. Better quality astrometry and simpler target selection than the $\it{Kepler}$ sample makes this data ideal for studies of the local star formation history and evolution of the Galactic disc. These results provide a strong case for detailed spectroscopic follow-up in the CVZs to complement that which has been (or will be) collected by current surveys. [Abridged]
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    198
    References
    7
    Citations
    NaN
    KQI
    []