Theoretical analysis and model test for rainfall-induced shallow landslides in the red-bed area of Sichuan

2018 
Heavy rainfall is a key cause of shallow landslides in red-bed terrains with steep topography and residual soils of degradable strength. In this study, laboratory model tests were carried out to examine the characteristics of rainfall infiltration, deformation, and failures of slopes in the red-bed area of Sichuan. The hydrological response and deformation of the slope soil during rainfall are addressed. Based on a modified Green–Ampt infiltration model, ponding along the bedrock surface is incorporated. A physically based model for shallow landslides caused by rainfall is developed. The theoretical analysis and the model test results indicate that the slope failures are related to erosion in the shallow soil layer and rainwater infiltration, particularly along preferential seepage channels. The process of rainfall-induced shallow landslides can be separated into three stages: erosion at the slope toe, tension crack formation at the slope crest, and shallow sliding. When initial underground water level is located at the bedrock surface or the preferential seepage flow quickly reaches the bedrock surface, it is easier for the soil slopes to slide along the bedrock surface than along the wetting front.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    38
    Citations
    NaN
    KQI
    []