A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting.

2021 
Electrochemical water splitting is one of the most sustainable approaches for generating hydrogen. Because of the inherent constraints associated with the architecture and materials, the conventional alkaline water electrolyzer and the emerging proton exchange membrane electrolyzer are suffering from low efficiency and high materials/operation costs, respectively. Herein, we design a membrane-free flow electrolyzer, featuring a sandwich-like architecture and a cyclic operation mode, for decoupled overall water splitting. Comprised of two physically-separated compartments with flowing H2-rich catholyte and O2-rich anolyte, the cell delivers H2 with a purity >99.1%. Its low internal ohmic resistance, highly active yet affordable bifunctional catalysts and efficient mass transport enable the water splitting at current density of 750 mA cm−2 biased at 2.1 V. The eletrolyzer works equally well both in deionized water and in regular tap water. This work demonstrates the opportunity of combining the advantages of different electrolyzer concepts for water splitting via cell architecture and materials design, opening pathways for sustainable hydrogen generation. Seawater electrolysis is promising for grid-scale H2 production without freshwater reliance, but high energy costs and detrimental Cl chemistry reduce its practical potential. Here, authors developed an energy-saving hybrid seawater electrolyzer for chlorine-free H2 production and N2H4 degradation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    2
    Citations
    NaN
    KQI
    []