Effect of chamfer geometry on the pressure drop of perforated plates with thin orifices

2015 
Abstract Perforated plates with thin orifices is one of the options under considerations to be used in the debris filtering bottom end pieces for the next generation of fuel assemblies for the Brazilian nuclear plants. The increase in pressure drop can be drastically reduced by optimizing the chamfer geometries. This paper describes the development and validation of a procedure devised to use Computational Fluid Dynamics (CFD) to accurately estimate the pressure drop of water flow through perforated plates with chamfered thin orifices. The procedure comprises a scaled down calculation domain, grid configuration and a set of numerical solution parameters. The validation was performed against experiments with a set of plates with different chamfer geometric features like position (inlet, outlet and both sides), angles and sizes. Three turbulence models were evaluated with the standard k – ɛ giving the best result. For the range of parameters evaluated here the pressure drop decrease of a two sided chamfer plate can be estimated as a sum of both inlet and outlet chamfers individually. In both cases the pressure drop decreases rapidly for small chamfers and more slowly for larger chamfers. In the flat regions the chamfer angle has little influence at the inlet and is more important at outlet
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    10
    Citations
    NaN
    KQI
    []