Replication study reveals miR-483-5p as an important target in prevention of cardiometabolic disease.

2021 
BACKGROUND Alterations in levels of circulating micro-RNAs might reflect within organ signaling or subclinical tissue injury that is linked to risk of diabetes and cardiovascular risk. We previously found that serum levels of miR-483-5p is correlated with cardiometabolic risk factors and incidence of cardiometabolic disease in a case-control sample from the populations-based Malmo Diet and Cancer Study Cardiovascular Cohort (MDC-CC). We here aimed at replicating these findings and to test for association with carotid atherosclerosis. METHODS We measured miR-483-5p in fasting serum of 1223 healthy subjects from the baseline examination of the population-based, prospective cohort study Malmo Offspring Study (MOS) and correlated miR-483-5p to cardiometabolic risk factors and to incidence of diabetes mellitus and coronary artery disease (CAD) during 3.7 (± 1.3) years of follow-up using logistic regression. In both MOS and MDC-CC we related mir-483-5p to carotid atherosclerosis measured with ultrasound. RESULTS In cross-sectional analysis miR-483-5p was correlated with BMI, waist circumference, HDL, and sex. After adjustment for age and sex, the association remained significant for all risk factors except for HDL. Logistic regression analysis showed significant associations between miR-483-5p and new-onset diabetes (OR = 1.94, 95% CI 1.06-3.56, p = 0.032) and cardiovascular disease (OR = 1.99, 95% CI 1.06-3.75, p = 0.033) during 3.7 (± 1.3) years of follow-up. Furthermore, miR-483-5p was significantly related with maximum intima-media thickness of the carotid bulb in MDC-CC (p = 0.001), but not in MOS, whereas it was associated with increasing number of plaques in MOS (p = 0.007). CONCLUSION miR-483-5p is related to an unfavorable cardiometabolic risk factor profile and predicts diabetes and CAD, possibly through an effect on atherosclerosis. Our results encourage further studies of possible underlying mechanisms and means of modifying miR-483-5p as a possible interventional target in prevention of cardiometabolic disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []