Viability and characterization trial of a novel method as an alternative to formaldehyde and Walter-Thiel cadaveric preservation for medical education and surgical simulation.

2021 
Abstract Introduction Despite its toxic and carcinogenic nature, formaldehyde is a widely used reactant for specimen preservation. With the need of specimens for both anatomical and surgical training, alternative preservation solutions (PS) have been proposed, however, their use is limited due to high costs and complexity. Hence, a new formaldehyde-free solution (FFS) is evaluated as a potential alternative for anatomical and surgical training. Methods Qualitative and Quantitative data were acquired. Specimens preserved using three different methods were selected. Flexibility was measured by joints goniometry and pneumoperitoneum pressures were evaluated followed by an exploratory laparoscopy. Undergraduate student's perceptions on cadavers preserved with different PS were obtained using surveys and focus groups. Results The main reason why cadaveric specimens were considered as useful tools was the perceived interaction with real tissues and the ‘practical’ concept of getting in touch with what students would be facing in the future as physicians, what we call “hands on” activities. FFS treated specimens showed better joint-movement ranges in comparison to other methods and pneumoperitoneum was acquired after 5 mmHg CO2 pressure. Students appreciated working with corpses regardless the technique used, however FFS specimens were defined as less uncomfortable, while presenting no sensory discomfort. Conclusions Even though alternative PS are effective, high costs and complexity restrict their usage. Cadavers preserved with FFS had similar range of movements compared with Thiel. Students preferred to work with FFS rather than FF due to flexibility, color, and no sensorial hassles. Thus, we propose FFS as viable alternative to traditional PS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []