Electrocatalytic CO2 Reduction with Cis and Trans Conformers of a Rigid Dinuclear Rhenium Complex: Comparing the Monometallic and Cooperative Bimetallic Pathways

2018 
Anthracene-bridged dinuclear rhenium complexes are reported for electrocatalytic carbon dioxide (CO2) reduction to carbon monoxide (CO). Related by hindered rotation of each rhenium active site to either side of the anthracene bridge, cis and trans conformers have been isolated and characterized. Electrochemical studies reveal distinct mechanisms, whereby the cis conformer operates via cooperative bimetallic CO2 activation and conversion and the trans conformer reduces CO2 through well-established single-site and bimolecular pathways analogous to Re(bpy)(CO)3Cl. Higher turnover frequencies are observed for the cis conformer (35.3 s–1) relative to the trans conformer (22.9 s–1), with both outperforming Re(bpy)(CO)3Cl (11.1 s–1). Notably, at low applied potentials, the cis conformer does not catalyze the reductive disproportionation of CO2 to CO and CO32– in contrast to the trans conformer and mononuclear catalyst, demonstrating that the orientation of active sites and structure of the dinuclear cis complex...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    24
    Citations
    NaN
    KQI
    []