Mechano-adaptive Responses of Alveolar Bone to Implant Hyper-loading in a pre-clinical in vivo model.

2020 
Objectives Oral implants transmit biting forces to peri-implant bone. In turn, those forces subject peri-implant bone to mechanical stresses and strains. Here, our objective was to understand how peri-implant bone responded to conditions of normal versus hyper-loading in a mouse model. Material and methods Sixty-six mice were randomly assigned to 2 groups; both groups underwent bilateral maxillary first molar extraction followed by complete healing. Titanium alloy implants were placed in healed sites and positioned below the occlusal plane. After osseointegration, a composite crown was affixed to the implant so masticatory loading would ensue. In controls, the remaining dentition was left intact but in the hyper-loaded (test) group, the remaining molars were extracted. 3D finite element analysis (FEA) calculated peri-implant strains resulting from normal and hyper-loading. Peri-implant tissues were analyzed at multiple time points using micro-computed tomography (µCT) imaging, histology, enzymatic assays of bone remodeling, and vital dye labeling to evaluate bone accrual. Results Compared to controls, hyper-loaded implants experienced a 3.6-fold increase in occlusal force, producing higher peri-implant strains. Bone formation and resorption were both significantly elevated around hyper-loaded implants, eventually culminating in a significant increase in peri-implant bone volume/total volume (BV/TV). In our mouse model, masticatory hyper-loading of an osseointegrated implant was associated with increased peri-implant strain, increased peri-implant bone remodeling, and a net gain in bone deposition. Conclusion Hyper-loading results in bone strain with catabolic and anabolic bone responses, leading to a net gain in bone deposition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []