Platform-Independent Classification System to Predict Molecular Subtypes of High-Grade Serous Ovarian Carcinoma.

2019 
PURPOSEMolecular cancer subtyping is an important tool in predicting prognosis and developing novel precision medicine approaches. We developed a novel platform-independent gene expression–based classification system for molecular subtyping of patients with high-grade serous ovarian carcinoma (HGSOC).METHODSUnprocessed exon array (569 tumor and nine normal) and RNA sequencing (RNA-seq; 376 tumor) HGSOC data sets, with clinical annotations, were downloaded from the Genomic Data Commons portal. Sample clustering was performed by non-negative matrix factorization by using isoform-level expression estimates. The association between the subtypes and overall survival was evaluated by Cox proportional hazards regression model after adjusting for the covariates. A novel classification system was developed for HGSOC molecular subtyping. Robustness and generalizability of the gene signatures were validated using independent microarray and RNA-seq data sets.RESULTSSample clustering recaptured the four known The Canc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []