Transcriptome profiling of anti-müllerian hormone treated preantral/small antral mouse ovary follicles

2018 
// Zia ur Rehman 1, 2 , Faheem Ahmad Khan 1, 3 , Farmanullah 1 , Hira Sajjad Talpur 1 , Qing Liu 4 , Shenhe Liu 1 and Liguo Yang 1 1 Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China 2 Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan 3 The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China 4 College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China Correspondence to: Liguo Yang, email: yangliguo2006@foxmail.com Zia ur Rehman, email: drzia80@aup.edu.pk Keywords: AMH; DEGs; follicles; ovaries Received: October 31, 2017      Accepted: May 14, 2018      Published: July 13, 2018 ABSTRACT The predisposition for the initiation of folliculogenesis in mammals including humans is programmed to start at fetal life and continues until reproductive capacity. The follicles grow from a pool of primordial follicles which retain the major functions in the entire reproductive life of a female. Anti-mullerian hormone (AMH), a glycoprotein belonging to the transforming growth factor-beta family, has an inhibitory effect on ovarian follicle development. The key regulatory target genes in primordial follicle development are of paramount importance in reproductive biology of female. A systems biology method was used to find regulatory genes performing critical role in primordial follicle development. A complete in-depth bioinformatics analysis was performed to investigate the changes in transcriptome of preantral to small antral mouse follicles treated for 12 h and 24 h with two different concentrations; 50 and 200 ng/ml of AMH, and thereby identify candidate genes in time and concentration manner. Firstly, we found differentially expressed genes that were time and concentration dependent in response to AMH. The network analysis of these differentially expressed genes provided new candidate genes and pathways associated with inhibitory action of AMH on the primordial follicle development. To further emphasize the function of AMH, the key identified genes’ protein-protein docking was analyzed and found the intracellular and extracellular protein-protein interaction. This study elucidates one of the novel mechanisms of AMH involvement in inhibition of ovarian follicle development which may lead to prolong productive life in female.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []