Understanding the Formation Mechanism of Graphene Frameworks Synthesized by Solvothermal and Rapid Pyrolytic Processes Based on an Alcohol–Sodium Hydroxide System

2015 
The determination of ways to facilitate the 2D-oriented assembly of carbons into graphene instead of other carbon structures while restraining the π–π stacking interaction is a challenge for the controllable bulk synthesis of graphene, which is vital both scientifically and technically. In this study, graphene frameworks (GFs) are synthesized by solvothermal and rapid pyrolytic processes based on an alcohol–sodium hydroxide system. The evolution mechanism of GFs is investigated systematically. Under sodium catalysis, the abundant carbon atoms produced by the fast decomposition of solvothermal intermediate self-assembled to graphene. The existence of abundant ether bonds may be favorable for 3D graphene formation. More importantly, GFs were successfully obtained using acetic acid as the carbon source in the synthetic process, suggesting the reasonability of analyzing the formation mechanism. It is quite possible to determine more favorable routes to synthesize graphene under this cognition. The electrochem...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    24
    Citations
    NaN
    KQI
    []