Microfluidic mixing system for precise PLGA-PEG nanoparticles size control.

2021 
In this study, a microfluidic device was employed to produce polymeric nanoparticles (NPs) with well-controlled sizes. The influence of several parameters in the synthesis process, namely polymer concentration, flow rate and flow rate ratio between the aqueous and organic solutions were investigated. To evaluate the NPs size effect, three diameters were selected (30, 50 and 70nm). Their cytocompatibility was demonstrated on endothelial cells and macrophages. Additionally, their efficacy to act as drug carriers was assessed in an in vitro inflammatory scenario. NPs loaded and released diclofenac (DCF) in a size-dependent profile (smaller sizes presented lower DCF content and higher release rate). Moreover, 30nm NPs were the most effective in reducing prostaglandin E2 concentration. Therefore, this study demonstrates that microfluidics can generate stable NPs with controlled sizes, high monodispersity and enhanced batch-to-batch reproducibility. Indeed, NPs size is a crucial parameter for drug encapsulation, release and overall biological efficacy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []