Transport parameters of single crystalline SiC for self-cooling device

2007 
Cooling is important to keep the temperatures of the highly integrated silicon electronic devices and power devices e.g. power MOSFET, IGBT. Yamaguchi et al. have proposed a new scheme to cool down the devices by its own current named ldquoself-cooling devicerdquo, in which the cooling process uses Peltier effect. In the proposed scheme, we should use the materials that have high thermal conductivity, high Seebeck coefficient and low electrical resistivity. These requirements are different from the conventional Peltier materialspsila. SiC is one of the candidate materials, and we measured the electrical resistivity, the Seebeck coefficient and the thermal conductivity of single-crystalline 4H-SiC in the temperature of 300 K - 400 K. We also evaluated the performance of the proposed cooling for the present power MOSFET by using the experimental data, and discuss the direction of the future study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    3
    Citations
    NaN
    KQI
    []