Research on preparation and in vitro evaluation of the dendrimer–peptide nuclear acid conjugate for amplification pretargeting

2021 
Amplification pretargeting has the potential to increase the tracer's accumulation in the tumor. This study aimed to develop a three-step amplification pretargeting strategy in nuclear medicine with a polymer conjugated with multiple copies of peptide nuclear acid (PNA). In this study, the tracer 18 F-labeled complementary PNA (18 F-cPNA) was prepared by click-chemistry with high radiochemical purity (>99%) and great stability in vitro. The PAMMA dendrimer generation 4 (G4) was conjugated with multiple copies of PNAs. The average number of PNA groups in the G4-PNA conjugate was determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and the accessibility to the 18 F-cPNA was identified by size-exclusion high-performance liquid chromatography (SE-HPLC). There were approximately 11.7 of 64 carboxyl groups modified with PNAs, of which more than 99% were accessible to 18 F-cPNA. 18 F-cPNA was added to a mixture of CC49-cPNA and G4-PNA, and the complex exhibited a single peak on high-performance liquid chromatography (HPLC) as evidence of complete hybridization between 18 F-cPNA and CC49-cPNA/G4-PNA. The LS174T tumor cells were incubated with CC49-cPNA followed by G4-PNA as an amplification platform before 18 F-cPNA was added to hybridize with CC49-cPNA/G4-PNA. Compared with conventional pretargeting without G4-PNA, the radioactivity signal was amplified about four times, which demonstrated that the dendrimer-PNA conjugate plays a crucial role in signal amplification.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []