Nanoscale 3D Stackable Ag-Doped HfOx-Based Selector Devices Fabricated through Low-Temperature Hydrogen Annealing

2019 
Electrochemical metallization-based threshold switching devices with active metal electrodes have been studied as a selector for high-density resistive random access memory (RRAM) technology in crossbar array architectures. However, these devices are not suitable for integration with three-dimensional (3D) crossbar RRAM arrays due to the difficulty in vertical stacking and/or scaling into the nanometer regime as well as the asymmetric threshold switching behavior and large variation in the operating voltage. Here, we demonstrate bidirectional symmetric threshold switching behaviors from a simple Pt/Ag-doped HfOx/Pt structure. While fabricating the Pt/Ag-doped HfOx/Pt film using a 250 nm hole structure, filaments composed of Ag nanoclusters were constructed through a low-temperature (∼200 °C) hydrogen annealing process where the shape of the film in a nanoscale via a hole structure was maintained for integration with 3D stackable crossbar RRAM arrays. Finite Ag filament paths in the HfOx layer led to unifo...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    9
    Citations
    NaN
    KQI
    []