The hydrogen metabolism of sulfur deprived Chlamydomonas reinhardtii cells involves hydrogen uptake activities

2017 
Abstract Several species of unicellular microalgae such as the model species Chlamydomonas reinhardtii possess plastid-localized [FeFe]-hydrogenases which, via ferredoxin, can accept electrons from photosynthetic electron transport. Thereby, under specific conditions, these algae light-dependently produce molecular hydrogen (H 2 ), which offers a sustainable way to generate a “green” and efficient fuel. Until today, the most common way to induce sustained H 2 production is to deprive Chlamydomonas of macronutrients such as sulfur (S) which results in a downregulation of photosynthetic production of molecular oxygen (O 2 ) and of assimilatory processes. These acclimation responses allow the O 2 sensitive algal [FeFe]-hydrogenases to become active and serve as an alternative electron sink of photosynthesis. Despite much progress in the field and a general understanding of the underlying mechanisms, many basic and applied aspects of the photosynthetic H 2 metabolism of eukaryotic algae remain to be elucidated. One rarely investigated factor is that microalgae have also been reported to consume H 2 , especially as a response to high H 2 concentrations. Here, we analyzed the H 2 uptake activities of S-deprived Chlamydomonas cells incubated in different PBRs providing different gas phase volumes, either in continuous light or in the dark. We show that H 2 uptake occurs after prolonged incubation in the light as well as in sudden darkness. Dark-induced H 2 uptake can be delayed adding the phosphoribulose kinase inhibitor glycolaldehyde, suggesting a connection to carbohydrate metabolism. The results indicate that PBR setups as well as envisioned outdoor cultivation systems with natural light-dark cycles have to be carefully designed to prevent efficiency losses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    6
    Citations
    NaN
    KQI
    []