Electronic Bypass for Diabetes: Optimization of Stimulation Parameters and Mechanisms of Glucagon-Like Peptide-1.

2021 
Objectives Intestinal electrical stimulation (IES) has been proposed for treating diabetes; however, its parameters need to be further systematically optimized. This study aimed to optimize the parameters of IES and investigate its possible mechanisms involving glucagon-like peptide-1 (GLP-1) in diabetic rats. Materials and methods Thirty-six high-fat diet-induced diabetic rats were chronically implanted with a pair of bipolar electrodes at the duodenum for IES. The oral glucose tolerance test (OGTT) was performed in a number of sessions with IES using different parameters and biphasic charge-balanced waveforms to derive the best values for train on-time, pulse frequency, and pulse width. Incretin hormones such as GLP-1 were assessed and the GLP-1 antagonist Exendin 9-39 was used to assess the role of GLP-1 in the ameliorating effect of IES on hyperglycemia. Results The most effective IES parameters in reducing blood glucose (BG) during the OGTT were derived: 1.2 sec on, 0.3 sec off, 80 Hz, 3 msec. IES with these parameters reduced BG level by at least 29% from 15 min to 180 min (p 0.05, IES + Exendin 9-39 vs. sham-IES, N = 8). Conclusion IES with the most effective parameters derived in this study improves hyperglycemia in diabetic rats. The ameliorating effect of IES on hyperglycemia is attributed to the enhanced release of GLP-1. IES has great potential for treating diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []