Chemical and Photonic Interactions in vitro and in vivo between Fluorescent Tracer and Nanoparticle-based Scavenger for enhanced Molecular Imaging

2019 
Abstract We hereby present a concept of scavenging excess imaging agent prior to a diagnostic imaging session, consequently allowing for enhanced contrast of signals originating from the tissue area of interest to the signals originating from systemic imaging agent residues. In our study, a prospective silica core-shell nanoparticle-based scavenger was designed and explored for its feasibility to scavenge a specific imaging agent (tracer) in the bloodstream. The developed tracer-scavenger system was first investigated under in vitro conditions to ensure proper binding between tracer and scavenger is taking place, as confirmed by Forster/fluorescence resonance energy transfer (FRET) studies. In vivo , two-photon imaging was utilized to directly study the interaction of the scavenger particles and the tracer molecules in the vasculature of mice. To our knowledge, a methodological solution for in vivo differentiation between signals, originating from tissue and blood, has not been presented elsewhere.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    4
    Citations
    NaN
    KQI
    []