Large-Scale Talent Flow Forecast with Dynamic Latent Factor Model

2019 
The understanding of talent flow is critical for sharpening company talent strategy to keep competitiveness in the current fast-evolving environment. Existing studies on talent flow analysis generally rely on subjective surveys. However, without large-scale quantitative studies, there are limits to deliver fine-grained predictive business insights for better talent management. To this end, in this paper, we aim to introduce a big data-driven approach for predictive talent flow analysis. Specifically, we first construct a time-aware job transition tensor by mining the large-scale job transition records of digital resumes from online professional networks (OPNs), where each entry refers to a fine-grained talent flow rate of a specific job position between two companies. Then, we design a dynamic latent factor based Evolving Tensor Factorization (ETF) model for predicting the future talent flows. In particular, a novel evolving feature by jointly considering the influence of previous talent flows and global market is introduced for modeling the evolving nature of each company. Furthermore, to improve the predictive performance, we also integrate several representative attributes of companies as side information for regulating the model inference. Finally, we conduct extensive experiments on large-scale real-world data for evaluating the model performances. The experimental results clearly validate the effectiveness of our approach compared with state-of-the-art baselines in terms of talent flow forecast. Meanwhile, the results also reveal some interesting findings on the regularity of talent flows, e.g. Facebook becomes more and more attractive for the engineers from Google in 2016.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    16
    Citations
    NaN
    KQI
    []