High-performance silicon nanopore hemofiltration membranes

2009 
Silicon micromachining provides the precise control of nanoscale features that can be fundamentally enabling for miniaturized, implantable medical devices. Concerns have been raised regarding blood biocompatibility of silicon-based materials and their application to hemodialysis and hemofiltration. A high-performance ultrathin hemofiltration membrane with monodisperse slit-shaped pores was fabricated using a sacrificial oxide technique and then surface-modified with poly(ethylene glycol) (PEG). Fluid and macromolecular transport matched model predictions well. Protein adsorption, fouling, and thrombosis were significantly inhibited by the PEG. The membrane retained hydraulic permeability and molecular selectivity during a 90-h hemofiltration experiment with anticoagulated bovine whole blood. This is the first report of successful prolonged hemofiltration with a silicon nanopore membrane. The results demonstrate feasibility of renal replacement devices based on these membranes and materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    118
    Citations
    NaN
    KQI
    []