A drug information embedding method based on graph convolution neural network

2021 
New drug development is an extremely time-consuming and high-risk process. [1]It has been widely valued by the biomedical industry to fully explore the new uses of existing drugs and reorientate them. [2]How to find drug disease with potential therapeutic relationship from a large number of unproven relationship pairs is the research focus of drug reorientation. With the help of machine learning model, we can improve the enrichment degree of potential drug disease relationship pairs, and reduce the false positive rate of prediction. In the past few years, a series of graph based convolutional network models have been developed to calculate the information latent feature representation of nodes and links. Researchers at home and abroad have done a lot of research on network embedding technology based on biomedical data, and have achieved a series of important research results. Among them, the research methods used can be divided into two categories: one is the traditional machine learning algorithm based on artificial feature extraction, the other is the method based on deep learning. For example, kipf and welling [3]proposed a new graph convolution network (GCN) with parts of existing models, DeepDR [4] and DTINet [5] based on node characteristics and their connections, which can be used for node classification. Aiming at the problem of imbalance of drug information data samples, the invention provides a drug relocation method based on deep learning multi-source heterogeneous network. In order to avoid the limitations of traditional feature extraction methods, such as highly dependent on the experience and knowledge of medical staff, strong subjectivity, consuming a lot of time and energy to complete, and extracting high-quality features with distinguishing features often exists In this paper, with the help of graph convolution encoder model and variational auto encoder neural network, we can automatically learn the characteristics of multi-source and heterogeneous drug low-dimensional network, and complete the drug relocation of drug disease association prediction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []