First-Principles Study of the Surfaces and Equilibrium Shape of Discharge Products in Li-Air Batteries.

2021 
Li-air batteries are a promising alternative to Li-ion batteries as they theoretically provide the highest possible specific energy density. Mainly, Li2O2 (lithium peroxide) and to a lesser extent, Li2O (lithium oxide) are assumed to be the discharge products of these batteries formed with the soluble LiO2 (lithium superoxide) considered to be an intermediate product. Bulk Li2O2 is an electronic insulator, and the precipitation of this compound on the cathode is thought to be the main limiting factor in achieving high capacities in lithium-oxygen cells. For the most promising electrolytes including solvents with high donor numbers, microscopy observations frequently reveal crystallite morphologies of Li2O2 compounds, rather than uniform layers covering the electrode surface. The precise morphologies of Li2O and Li2O2 particles, and their effect and their extent of contact with the electrode, which may all affect the capacity and rechargeability, however, remain largely undetermined. Here, we address the stability of various Li2O and Li2O2 surfaces and consequently, their crystallite morphologies using density functional theory calculations and ab initio thermodynamics. In contrast to previous studies, we also consider high-index surface terminations, which exhibit surprisingly low surface energies. We carefully analyze the reasons for the stability of these high-index surfaces, which also prominently influence the equilibrium shape of the particles, at least for Li2O2, and discuss the consequences for the observed morphology of the reaction products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    0
    Citations
    NaN
    KQI
    []