A large-scale transcriptome-wide association study (TWAS) of ten blood cell phenotypes reveals complexities of TWAS fine-mapping

2021 
Hematological measures are important intermediate clinical phenotypes for many acute and chronic diseases. Hematological measures are highly heritable, and although genome-wide association studies (GWAS) have identified thousands of loci containing trait-associated variants, the causal genes underlying these associations are often uncertain. To better understand the underlying genetic regulatory mechanisms, we performed a transcriptome-wide association study (TWAS) using PrediXcan to systematically investigate the association between genetically-predicted gene expression and hematological measures in 54,542 individuals of European ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. We found 239 significant gene-trait associations with hematological measures. Among this set of 239 associations, we replicated 71 at p < 0.05 with same direction of effect for the blood cell trait in a meta-analysis of TWAS results consisting of up to 35,900 European ancestry individuals from the Womens Health Initiative (WHI), the Atherosclerosis Risk in Communities Study (ARIC), and BioMe Biobank. We further attempted to refine this list of candidate genes by performing conditional analyses, adjusting for individual variants previously associated with these hematological measures, and performed further fine-mapping of TWAS loci. To assist with the interpretation of TWAS findings, we designed an R Shiny application to interactively visualize TWAS results, one genomic locus at a time, by integrating our TWAS results with additional genetic data sources (GWAS, TWAS from other gene expression reference panels, conditional analyses, known GWAS variants, etc.). Our results and R Shiny application highlight frequently overlooked challenges with TWAS and illustrate the complexity of TWAS fine-mapping efforts. Author SummaryTranscriptome-wide association studies (TWAS) have shown great promise in furthering our understanding of the genetic regulatory mechanisms underlying complex trait variation. However, interpreting TWAS results can be incredibly complex, especially in large-scale analyses where hundreds of signals appear throughout the genome, with multiple genes often identified in a single chromosomal region. Our research demonstrates this complexity through real data examples from our analysis of hematological traits, and we provide a useful web application to visualize TWAS results in a broadly approachable format. Together, our results and web application illustrate the importance of interpreting TWAS studies in context and highlight the need to carefully examine results in a region-wide context to draw reasonable conclusions and formulate mechanistic hypotheses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []