Metamorphic response within different subduction–obduction settings preserved on the NE Arabian margin

2020 
Abstract Metamorphic rocks form a minor component of the NE Arabian margin in Oman and the United Arab Emirates (UAE). Conditions span almost the entire range of crustal metamorphism from very high-P/low-T eclogite and blueschist to high-P/moderate-T epidote- to upper-amphibolite and low-P/high-T granulite facies. The NE Arabian margin experienced at least six metamorphic events, each characterized by distinct peak metamorphic temperature, depth of burial, average thermal gradient and timing. Synthesis of the available metamorphic data defines five different tectonic settings that evolved during the middle Cretaceous: [1] The Saih Hatat window exposes former continental margin crust that was buried and metamorphosed in a SW-dipping subduction system. Lower-plate units in the window include relict oceanic crust with eclogite (M1–M2) parageneses that recrystallized at pressures of ~14–23 kbar under very low thermal gradients of 7–10 °C/km. Peak metamorphism occurred at ~110 Ma. Peak assemblages were overprinted by garnet–glaucophane-blueschist foliations (M3) at about ~104–94 Ma that formed at ~10–15 kbar and 10–15 °C/km during the first-stage of isothermal exhumation. [2] Metamorphic soles in the footwall of the Semail ophiolite experienced a two-stage history of deep burial and peak metamorphism at ~96–94 Ma, followed by retrogression during obduction onto the continental margin between ~93–84 Ma. Peak metamorphic garnet–clinopyroxene–hornblende–plagioclase assemblages (M4s), exposed at highest structural levels, formed at 743 ± 13 °C and 10.7 ± 0.4 kbar, indicating Barrovian thermal regimes of 20.0 ± 2.2 °C/km. Burial of seafloor sediments and oceanic crust to ~38 km depth, was attained within a short-lived, NE-dipping intra-oceanic subduction system. The relatively high average thermal gradient during the peak of metamorphism was the result of heating after subcretion onto the base of hanging-wall oceanic lithosphere. [3] The Bani Hamid terrane consists of seafloor cherts and calcareous turbidites, metamorphosed to low-P/high-T granulite condition at ~96–94 Ma. Diagnostic assemblages (M4b) such as orthopyroxene–cordierite–quartz–plagioclase and orthopyroxene–sapphirine–hercynite–quartz–plagioclase, formed at conditions averaging ~915 ± 35 °C, ~6.1 ± 0.9 kbar and ~42.9 ± 6.5 °C/km. The elevated average thermal gradient, combined with significant depths of burial, is anomalous for typical oceanic settings. This suggests that these sea-floor sediments were buried to ~22 km depths within the intra-oceanic subduction system, accreted onto the hanging-wall, and metamorphosed at high-T during subduction of a recently active spreading ridge. [4] A plausible plate tectonic arrangement that can accounts for the different metamorphic elements on the Arabian margin is one composed of divergent subduction systems: a relatively long-lived SW-dipping subduction zone at the continental margin, and a short-lived, NE-dipping intra-oceanic subduction system. Consumption of the intervening oceanic crust led to obduction of the Semail ophiolite and accreted metamorphic soles from the upper-plate of the floundered outboard subduction system. SW-directed obduction was initiated between 93.7–93.2 Ma and continued until ~84 Ma, producing lower-amphibolite to sub-greenschist facies retrograde fabrics in the metamorphic soles (M5) and sub-metamorphic melange in the footwall. [5] The lower-plate of the Saih Hatat window was reworked by top-to-NE extensional shear at epidote-greenschist facies grades (M6) between ~84–76 Ma. Crustal-scale structures were reactivated as extensional detachments that telescoped the continental margin, leading to isothermal decompression and development of an asymmetric core complex that segmented the Semail ophiolite and formed the Saih Hatat domal window.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    217
    References
    1
    Citations
    NaN
    KQI
    []