A Highly efficient and stable Cellulose-based Ion Gel Polymer Electrolyte for Solid-state Supercapacitors

2019 
To solve the current situation of low efficiency and instability of SCs, herein, the regenerated cellulose nanoparticles are applied on the electrolyte for the first time and a kind of solid-state SC with high performance is synthesized in a facile way. The electrolyte is prepared taking copolymer poly(vinyl alcohol) (PVA) as the polymer matrix, 1-butyl-3-methylimidazolium trifluoromethansulfonate (BmimCF3SO3) as the supporting electrolyte, graphene oxide as the ionic conducting promoter, and regenerated cellulose nanoparticles as the regulator. This doped ion gel significantly improves the charge-transfer resistance, because the homogeneously distributed regenerated cellulose nanoparticles make the ion transmission more orderly and stable and then reduce charge transfer resistance greatly. A model of the transmission of ions in the novel electrolyte is proposed. The cellulose-based gel electrolyte enables the SC to show good capacity retention of about 80%, and its charge/discharge efficiency maintains a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    12
    Citations
    NaN
    KQI
    []