Fabrication of silver chloride nanoparticles using a plant serine protease in combination with photoactivation and investigation of their biological activities

2018 
: Recently, the development of "green" methods for fabrication of silver nanoparticles (Ag-NPs) has been emphasized, in view of their environmental safety, feasibility, and low cost. In this study, a serine protease, EuP-82 from Euphorbia cf. lactea latex, was used to fabricate silver chloride nanoparticles (AgCl-NPs) in phosphate-buffered saline (pH 7.2), under the influence of visible light. The fabricated nanoparticles had a maximal surface plasmon resonance absorption peak at 435 nm. The size of the AgCl-NPs, estimated by scanning electron microscopy, was 57 ± 14.7 nm. Energy dispersive X-ray spectroscopy, X-ray absorption spectroscopy, and X-ray diffraction analysis confirmed that the fabricated Ag-NPs were of the AgCl type. The fabricated nanoparticles had antioxidant activity, scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals with IC50 of 204 ± 1.8 μg/mL. The fabricated AgCl-NPs had broad-spectrum in vitro antimicrobial activities, acting against the Gram-positive bacteria Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Bacillus cereus, and the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. AgCl-NPs also showed antifungal activity against Candida albicans and C. tropicalis. In addition, AgCl-NPs showed antiprotozoal activity against Giardia lamblia, with IC50 202 ± 2.1 μg/mL. Based on the biological activities of the fabricated AgCl-NPs, they have the potential for widespread application in medicine and industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []